Matriks, Macam-Macam Matriks, dan Operasi Matriks
Assalamualaikum wr.wb,
Nama : Reinaldi Akmal (29)
Kelas : XI IPS 2
Pengertian Matriks
Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.
Ordo Matriks
Dijelaskan sebelumnya matriks terdiri dari unsur-unsur yang tersusun secara baris dan kolom. Jika banyak baris suatu matriks adalah m, dan banyak kolom suatu matriks adalah n, maka matriks tersebut memiliki ordo matriks atau ukuran m x n. Perlu diingat bahwa m dan n hanya sebuah notasi, sehingga tidak boleh dilakukan sebuah perhitungan (penjumlahan, perkalian).
Penamaan/notasi matriks menggunakan huruf kapital, sedangkan elemen-elemen di dalamnya dinotasikan dengan huruf kecil sesuai dengan penamaan matriks dan diberi indeks ij. Indeks tersebut menyatakan posisi elemen matriks, yaitu pada baris i dan kolom j.
Pada matriks terdapat dua jenis diagonal, yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan elemen-elemen dengan yang bisa membentuk garis miring. Diagonal sekunder merupakan kebalikan dari garis miring diagonal utama.
Macam-Macam Matriks
Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :
1. Matriks Baris dan Matriks Kolom
Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:
A = (1 4) atau B = (3 7 9) adalah matriks baris
atau adalah matriks kolom
2. Matriks Persegi
Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
Contoh:
adalah matriks persegi berordo 3, atau
adalah matriks persegi berordo 2.
3. Matriks Segitiga Atas dan Segitiga Bawah
Matriks persegi A yang memiliki elemen matriks untuk atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks untuk atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
Contoh:
adalah matriks segitiga atas,
adalah matriks segitiga bawah.
4. Matriks Diagonal
Matriks persegi A yang memiliki elemen matiks untuk atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.
Contoh:
atau
5. Matriks Skalar
Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.
Contoh:
atau
6. Matriks Indentitas
Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan “I”. Contoh:
atau
7. Matriks Simetris
Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen sama dengan elemen .
Contoh:
Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.
Operasi Matrikss
Terdapat operasi dasar matrikss dalam perhitungannya yaitu menggunakan penjumlahan dan pengurangan matrikss dan hanya dapat dilakukan pada kedua bialngan metrik memiliki ukuran dan tipe yang sama, dan elemen tersebut harus memiliki posisi dan letak yang sama. Contohnya bisa anda lihat di bawah ini.
Penjumlahan Matrikss
Perhitungan penjumlahan dapat anda lihat pada contoh atau penjumlahan nya dibawah:
Pengurangan Matrikss
Dalam perhitungan matriksnya anda dapat mengurangi jumlah dari bialngan tersebut. Dapt anda lihat seperti berikut :
Pada sifatnya dalam pengurangan dan penjumlahan dapat anda lihat dibawah ini :
Perkalian Matrikss
Pada perkalian ini dapat dikalikan dengan bilangan bulat dengan matriiks lainya, contohnya anda dapat lihat di dibawah ini:
Perkalian ini dapat dikombinasikan dengan penjumlahan atau pengurangan bisa kita lakukan dengan ordo sama, sifatnya sebagai berikut :
Rumus dan Contoh Matrikss
Contoh Soal Matrikss
Soal 1
Soal 2
Komentar
Posting Komentar